

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-22/0332 of 20 June 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

TOX screw anchor Sumo Max 1

Mechanical fasteners for use in concrete

TOX-Dübel-Technik GmbH Brunnenstraße 31 72505 Krauchenwies DEUTSCHLAND

Werk 1

22 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601, Edition 05/2021

European Technical Assessment ETA-22/0332

Page 2 of 22 | 20 June 2022

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-22/0332

Page 3 of 22 | 20 June 2022

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The TOX screw anchor Sumo Max 1 concrete screw is an anchor in size 6, 8, 10, 12 and 14 mm made of galvanised steel respectively steel with zinc flake coating, made of stainless or high corrosion resistant steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B4, C1 and C2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1 and C2
Displacements (static and quasi-static loading)	See Annex C7
Characteristic resistance and displacements for seismic performance category C1 and C2	See Annex C3 to C5, C8

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C6

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance
Durability	See Annex B1

European Technical Assessment ETA-22/0332

Page 4 of 22 | 20 June 2022

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

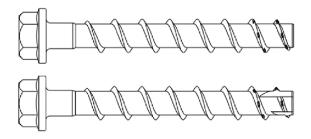
In accordance with European Assessment Document EAD No. 330232-01-0601 the applicable European legal act is: [96/582/EC].

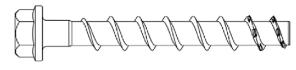
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

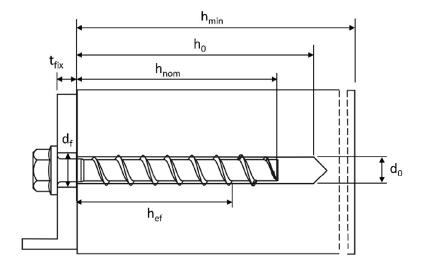
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 20 June 2022 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock beglaubigt:
Referatsleiterin Tempel


Product in installed condition

TOX screw anchor Sumo Max 1


- Galvanized carbon steel
- Zinc flakes coated carbon steel

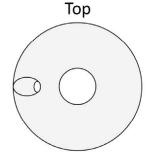
- Stainless steel A4
- Stainless steel HCR

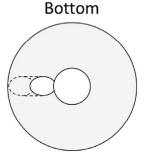
e.g. TOX screw anchor, zinc flakes coated, with hexagon head and fixture

 d_0 = nominal drill hole diameter

t_{fix} = thickness of fixture

d_f = clearance hole diameter


 h_{min} = minimum thickness of member


h_{nom} = nominal embedment depth

 h_0 = drill hole depth

h_{ef} = effective embedment depth

Filling washer (optional) to fill annular gap

TOX screw anchor Sumo Max 1

Product description

Product in installed condition

Annex A1

Product description Screw types	Annex A2		
		hexagon drive e.g. TSM 6x55 IM N	
	Configuration with hexagon drive connection thread e.g. TSM 6x55 I Configuration with internal thread	M8 SW10; Type ST-6	
		connection thread e.g. TSM 6x55 /	AG M8; Type ST-6
	(SM) OZ	Configuration with large pan head drive e.g. TSM 8x80 LP VZ 40; Type Configuration with countersunk he	e P
	(154g	Configuration with pan head and drive e.g. TSM 8x80 P VZ 40; Type	P
		Configuration with countersunk he e.g. TSM 8x80 C VZ 40; Type SK	ead and TORX drive
	(S4)	Configuration with hexagon head e.g. TSM 8x80 SW13 OS; Type S	
	OCT AND	Configuration with washer and bu e.g. TSM BC ST 14x130 SW24 VZ 4	
	(S. 14)	Configuration with washer, hexago TORX drive e.g. TSM 8x80 SW13; T	
	(154) (0) (0) (0)	Configuration with washer and he e.g. TSM 8x80 SW13 VZ 40; Type S	•
	0	Configuration with metric connect and hexagon drive e.g. TSM 8x105	
	©	Configuration with metric connect and hexagon socket e.g. TSM 8x10	

Table 1: Material

Part	Product name	Material						
all types	TSM	- Steel EN 10263-4:2017 galvanized acc. to EN ISO 4042:2018 - Zinc flake coating according to EN ISO 10683:2018 (≥5µm) - Zinc flake coating according to EN ISO 10683:2018 special coating TOX KORR (≥20µm)						
	TS A4	1.4401; 1.4404; 1.4571; 1.4578						
	TSM HCR	1.4529						

		Nominal char	Nominal characteristic steel						
Part	Product name	Yield strength	Ultimate strength	elongation					
		f _{yk} [N/mm²]	f _{uk} [N/mm²]	A ₅ [%]					
-11	TSM								
all	TSM A4	560	700	≤8					
types	TSM HCR								

Table 2: Dimensions

Anchor size			(5	8			10			12			14		
Nominal embedme	Nominal embedment h _{nom}		1	2	1	2	3	1	2	3	1	2	3	1	2	3
depth		[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Screw length	≤L	[mm]		500												
Core diameter	d _K	[mm]	5,1 7,1			9,1			11,1				13,1			
Thread outer diameter	d _s	[mm]	7	7,5 10,6				12,6		14,6		5		16,6		
Thickness of filling washer	t _v	[mm]		-		5		5		5			5			

Marking:

TSM

TSM Screw type: Screw size: 10 100 Screw length:

TSM HCR

Screw type:

Screw size:

Material:

Screw length:

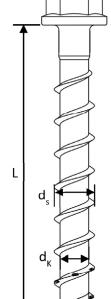
Screw type:

TSM A4

TSM

10

100


Α4

TSM

100

HCR

10

TSM BC ST

TSM BC ST Screw type: Screw size: 10 100 Screw length:

Product description

Material, Dimensions and markings

Annex A3

Specification of Intended use

Table 3: Anchorages subject to

TSM screw anchor size		6			8		10		12		14				
Nominal embedment		h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
depth	[mm]	40	55	45	55	65	55	75	85	65	85	100	65	85	115
Static and quasi-static loads		All sizes and all embedment deaths													
Fire exposure			All sizes and all embedment depths												
C1 category - seismic		ok	ok				ok								
C2 category – seismic (A4 and HCR: no performance assessed)		1	.)	1	1)	ok	1)	1)	ok	1	.)	ok	1	.)	ok

no performance assessed

Base materials:

- Compacted reinforced and unreinforced concrete without fibers according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Concrete screws subject to dry internal conditions: all screw types.
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2006 + A1:2015
 - Stainless steel according to Annex A3, screw with marking A4: CRC III
 - High corrosion resistant steel according to Annex A3, screw with marking HCR: CRC V

TOX screw anchor Sumo Max 1

Intended use
Specification

Annex B1

Specification of Intended use - continuation

Design:

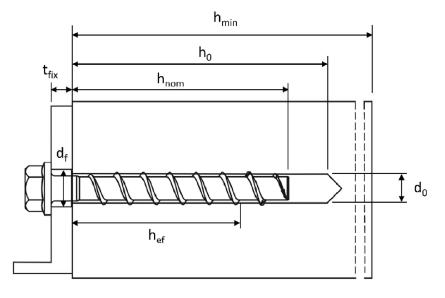
- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 and EOTA Technical Report TR 055,
 Version February 2018.

The design for shear load according to EN 1992-4:2018, Section 6.2.2 applies for all specified diameters d_f of clearance hole in the fixture in Annex B3, Table 4.

Installation:

- Hammer drilling or hollow drilling, hollow drilling only for sizes 8-14.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth of aborted hole or closer, if the aborted hole is filled with high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The head of the anchor is supported in the fixture and is not damaged.
- The borehole may be filled with injection mortar CF-T 300V or ATA 2004C.
- Adjustability according to Annex B6 for sizes 6-14, all embedment depths except for seismic application.
- Cleaning of borehole is not necessary, if using a hollow drill.

TOX screw anchor Sumo Max 1


Intended use
Specification continuation

Annex B2

756974 22 8 06 01-103/22

TSM screw anchor size			6	,		8		10			
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedment depth		[mm]	40	55	45	55	65	55	75	85	
Nominal drill hole diameter	d ₀	[mm]	6	j		8			10		
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,4	10		8,45			10,45		
Drill hole depth	h ₀ ≥	[mm]	45	60	55	65	75	65	85	95	
Clearance hole diameter	d _f ≤	[mm]	8			12			14		
Installation torque (version with connection thread)	T_{inst}	[Nm]	10)		20		40			
Torque impact screw driver		[Nm]			e according to manufacturer's instructions					ions	
			16	0		300		400			
TSM screw anchor size			12				14				
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nor}	_{n2} h	l _{nom3}	h _{nom1}	h _{nor}	_{n2} ł	1 _{nom3}	
		[mm]	65	85		100	75	100	0	115	
Nominal drill hole diameter	d_0	[mm]		1	2			1	.4		
Cutting diameter of drill bit	d _{cut} ≤	[mm]		12	,50			14,	,50		
Drill hole depth	h ₀ ≥	[mm]	75	95		110	85	110	0	125	
Clearance hole diameter	d _f ≤	[mm]		16			1	.8			
Installation torque (version with connection thread)	T_{inst}	[Nm]		60			80				
Tarqua impact corous driver		[NIma]	Max	. torqu	e accord	ling to r	nanufac	turer's	instruct	ions	
Torque impact screw driver		[Nm]	650 650								

TOX screw anchor Sumo Max 1

Intended use Installation parameters

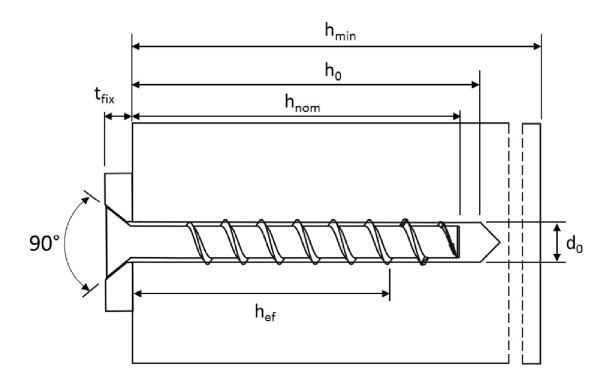
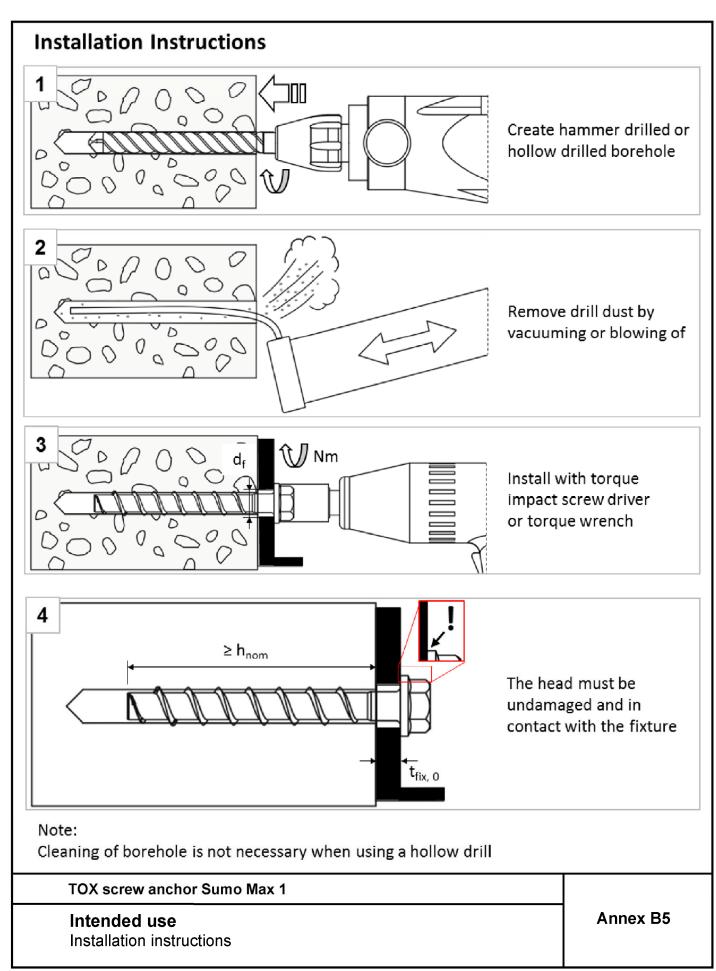
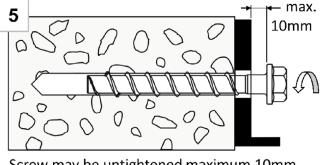

Annex B3

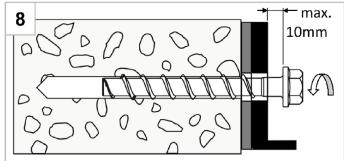
Table 5: Minimum thickness of member, minimum edge distance and minimum spacing


TSM screw anchor size			(5		8		10			
Nominal embedment depth [mm]		h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
		[mm]	40	55	45	55	65	55	75	85	
Minimum thickness of member	h _{min}	[mm]	100		100		120	100	130		
Minimum edge distance	C _{min}	[mm]	40		40 50						
Minimum spacing	S _{min}	[mm]	4	40		40 50		50			

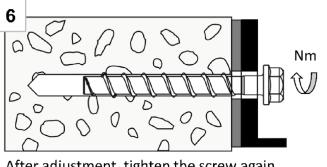
TSM screw anchor si		12		14					
Nominal embedment depth		h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
Nominal embedment	[mm]		65	65 85		75	100	115	
Minimum thickness of member	h _{min}	[mm]	120	130	150	130	150	170	
Minimum edge distance	C _{min}	[mm]	50		70	50	70		
Minimum spacing	S _{min}	[mm]	W	50	70	50	70		

TOX screw anchor Sumo Max 1	
Intended use Minimum thickness of member, minimum edge distance and minimum spacing	Annex B4

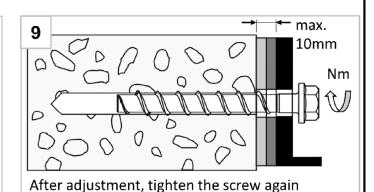


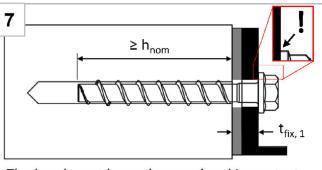

Installation Instructions - Adjustment

1. Adjustment

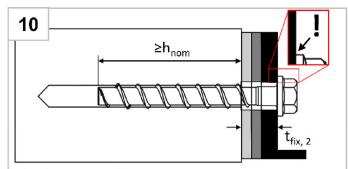


Screw may be untightened maximum 10mm


2. Adjustment



Screw may be untightened maximum 10mm



After adjustment, tighten the screw again

The head must be undamaged and in contact with the fixture

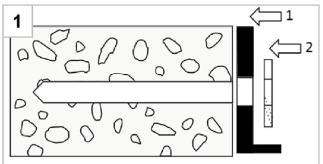
The head must be undamaged and in contact with the fixture

Note:

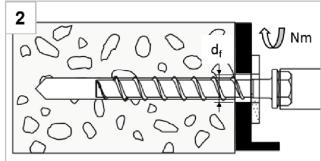
The fastener can be adjusted maximum two times. The total allowed thickness of shims added during the adjustment process is 10mm. The final embedment depth after adjustment process must be larger or equal than h_{nom}.

TOX screw anchor Sumo Max 1

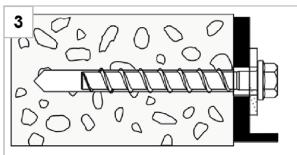
Intended use

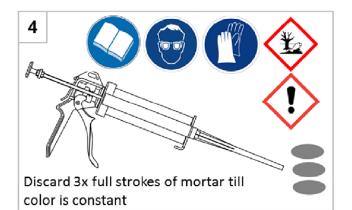

Installation instructions - Adjustment

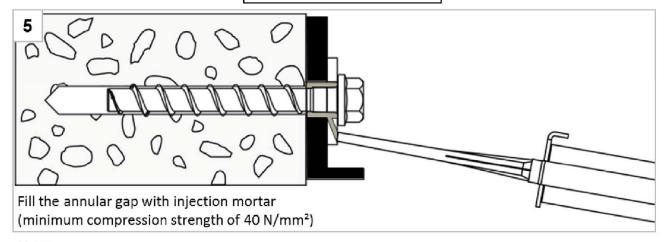
Annex B6



Installation Instructions - Filling annular gap


Positioning of fixture and filling washer


After preparing borehole (Annex B5, figure 1+2), position first fixture (1), than filling washer (2)


Install with torque impact screw driver or torque wrench

Installed condition without injected mortar in the filling washer

Filling the annular gap

Note:

For seismic loading the installation with filled and without filled annular gap is approved. Differences in performance can be found in Annex C5 - C7.

TOX screw anchor Sumo Max 1

Intended use

Installation instructions - Filling annular gap

Annex B7

Table 6: Cha	irac	teristic val	ues fo	r static	and q	uasi-st	atic loa	ading,	sizes 6	-10			
TSM screw a	nch	nor size			(5		8			10		
Nominal and	- مار-			h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal emb	ean 	nent aeptn		[mm]	40	55	45	55	65	55	75	85	
Steel failure	for	tension and	shear	loadin	_ 								
Characteristic	Characteristic tension load N _{Rk}					14,0 27,0 45,0							
Partial factor			γ Ms,N	[-]		1,5							
Characteristic	she	ear load	V ⁰ _{Rk,s}	[kN]	7,	,0	13	3,5	17,0	22,5	34	.,0	
Partial factor			γ Ms,V	[-]				1,	25				
Ductility factor	or		k ₇	[-]				0,	,8				
Characteristic	be	nding load	$M^0_{Rk,s}$	[Nm]	10),9		26,0			56,0		
Pull-out failu	ıre												
Characteristic		cracked	$N_{Rk,p}$	[kN]	2,0	4,0	5,0	9,0	12,0	9,0	≥ N ⁰	Rk,c ¹⁾	
tension load C20/25		uncracked	$N_{Rk,p}$	[kN]	4,0	9,0	7,5	12,0	16,0	12,0	20,0	26,0	
Increasing		C25/30						1,	12				
factor for	L	C30/37	Ψς	[-]	1,22 1,41								
$N_{Rk,p} = N_{Rk,p(C20/25)} * \psi_c$		C40/50	С										
NRk,p(C20/25)													
Concrete fail			ilure, d	concret		failure		i 	ilure				
Effective emb	edr	nent depth	h _{ef}	[mm]	31	44	35	43	52	43	60	68	
k-factor	cra	acked	k _{cr}	[-]				7,	,7				
140101	un	cracked	k _{ucr}	[-]				11	.,0				
Concrete	sp	acing	S _{cr,N}	[mm]				3 x	h _{ef}				
cone failure	ed	ge distance	C _{cr,N}	[mm]		•	•	1,5	x h _{ef}	•			
Colittina	res	sistance	N ⁰ Rk,sp	[kN]	4,0	9,0	7,5	12,0	16,0	12,0	20,0	26,0	
Splitting failure	sp	acing	S _{cr,Sp}	[mm]	120	160	120	140	150	140	180	210	
	ed	ge distance	C _{cr,Sp}	[mm]	60	80	60	70	75	70	90	105	
Factor for pry	/-ou	t failure	k ₈	[-]			1	,0			2,	.0	
Installation fa	cto	r	γ_{inst}	[-]				1,	,0				
Concrete ed	ge f	ailure											
Effective leng	th ir	n concrete	$I_f = h_{ef}$	[mm]	31	44	35	43	52	43	60	68	
Nominal oute screw	er di	ameter of	d _{nom}	[mm]	(5		8			10		
1) N ⁰ _{Rk,c} according	ng to	EN 1992-4:20	018										
TOX so	crev	w anchor Su	mo Ma	x 1									
		ances ristic values	for sta	tic and	quasi-	static lo	oading,	sizes 6	S-10	Annex C1			

TSM screw a	inchor size				12			14		
			h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom}	
Nominal emb	edment depth		[mm]	65	85	100	75	100	115	
Steel failure	for tension and shea	ar loadin	g							
Characteristic	tension load	N _{Rk,s}	[kN]	67,0 94,0						
Partial factor		γ _{Ms,N}	[-]			1,	,5			
Characteristic	shear load	V ⁰ _{Rk,s}	[kN]	33,5	42	2,0		56,0		
Partial factor		γ _{Ms,V}	[-]			1,:	25			
Ductility factor	or	k ₇	[-]			0,	,8			
Characteristic	bending load	$M^0_{Rk,s}$	[Nm]		113,0			185,0		
Pull-out failu	ıre									
Characteristic	cracked	N _{Rk,p}	[kN]	12,0			0 1)			
tension load C20/25	uncracked	$N_{Rk,p}$	[kN]	16,0	$\geq N^0_{Rk,c}$ 1)					
	C25/30					1,:	12			
Increasing factor for	C30/37	Ψ_{c}	, , [1,22					
N _{Rk,p} =	C40/50	r c	[-]							
N _{Rk,p(C20/25)} * ψ ₀	C50/60					1,	58			
	lure: Splitting failure								ı	
Effective emb	edment depth	h _{ef}	[mm]	50	67	80	58	79	92	
k-factor	cracked	k ₁ =k _{cr}	[-]			7,	,7			
	uncracked	k ₁ = k _{ucr}	[-]			11	.,0			
Concrete	spacing	S _{cr,N}	[mm]			3 x	h _{ef}			
cone failure	edge distance	C _{cr,N}	[mm]			1,5	x h _{ef}			
Splitting	resistance	N ⁰ _{Rk,sp}	[kN]	16,0	27,0	35,0	21,5	34,5	43,5	
failure	spacing	S _{cr,Sp}	[mm]	150	210	240	180	240	280	
	edge distance	C _{cr,Sp}	[mm]	75	105	120	90	120	140	
Factor for pry		k ₈	[-]	1,0	2,	,0	1,0	2	,0	
Installation fa	ictor	γ inst	[-]			1,	,0			
Concrete ed	ge failure				1					
Effective leng	th in concrete	$I_f = h_{ef}$	[mm]	50	67	80	58	79	92	
	er diameter of screw	d_{nom}	[mm]		12			14		
¹⁾ N ⁰ _{Rk,c} accordi	ng to EN 1992-4:2018									
TOX so	rew anchor Sumo M	ax 1								

Table 8: Seismic category C1 – Characteristic load values (type S, type SK, type ST,
type ST-6 ¹⁾ , type P and type I ¹⁾)

TSM screw anchor size	anchor size		5	8	10		12	14
Nominal embedment depth	h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom3}	h _{nom3}	h _{nom3}
Nominal embedment depth	[mm]	40	55	65	55	85	100	115

Steel failure for tension and shear	· load (v	ersion	type S,	type SK	, type S	Γ, type S	T-6 ¹⁾ , ty	pe P, type	e l ¹⁾)		
Characteristic load	N _{Rk,s,C1}	[kN]	14	ŀ,0	27,0	45	,0	67,0	94,0		
Partial factor	γ _{Ms,N}	[-]	1,5								
Characteristic load	$V_{Rk,s,C1}$	[kN]	4,7	5,5	8,5	13,5	15,3	21,0	22,4		
Partial factor	γ _{Ms,V}	[-]	1,25								
With filling of the annular gap ²⁾	$lpha_{\sf gap}$	[-]		1,0							
Without filling of the annular gap ³⁾	α_{gap}	[-]				0,5					

Pull-out failure (version type S, type	SK, type	ST, ty	oe ST-6¹	⁾ , type P	, type l¹	⁾)	
Characteristic tension load in cracked concrete C20/25	N _{Rk,p,C1}	[kN]	2,0	4,0	12,0	9,0	≥ N ⁰ _{Rk,c} ⁴⁾

Concrete cone failure (version type	S, type S	SK, typ	e ST, tyլ	oe ST-6 ¹	⁾ , type P	, type l¹))				
Effective embedment depth	h _{ef} [mm] 31 44 52 43 68 80 92										
Edge distance	C _{cr,N}	[mm]	1,5 x h _{ef}								
Spacing	S _{cr,N}	[mm]		3 x h _{ef}							
Installation safety factor	γ_{inst}	[-]				1,0					

Concrete pry-out failure (version ty	pe S, typ	e SK, 1	type ST, type P)	
Factor for pry-out failure	k ₈	[-]	1,0	2,0

Concrete edge failure (version type	S, type S	K, typ	e ST, ty _l	pe P)					
Effective length in concrete	$I_f = h_{ef}$	[mm]	31	44	52	43	68	80	92
Nominal outer diameter of screw	d _{nom}	[mm]	6	6	8	10	10	12	14

¹⁾ only tension load

TOX screw anchor Sumo Max 1

Performances

Seismic category C1 – Characteristic load values

Annex C3

²⁾ With filling of the annular gap according to annex B7, figure 5

³⁾ Without filling of the annular gap according to annex B5

 $^{^{4)}~}N^0_{Rk,c}$ according to EN 1992-4:2018

Table 9: Seismic category C2 1) – Characteristic load values with filled annular gap
according to annex B7, figure 5 (type S, type ST, type P)

TSM screw anchor size			8	10	12	14		
Name in all a male a directors of a costle		h _{nom}		h _{nc}	om3			
Nominal embedment depth		[mm]	65	85	100	115		
Steel failure for tension and shear	load (ve	rsion typ	e S, type ST,	type P)				
Characteristic load	N _{Rk,s,C2}	[kN]	27,0	45,0	67,0	94,0		
Partial factor	γ _{Ms,N}	[-]		1,	5			
Characteristic load	V _{Rk,s,C2}	[kN]	9,9	18,5	31,6	40,7		
Partial factor	γMs,V	[-]		1,2	25			
With filling of the annular gap	$lpha_{\sf gap}$	[-]	[-] 1,0					
Pull-out failure (version type S, type	ST, type P)						
Characteristic load in cracked concrete	N _{Rk,p,C2}	[kN]	2,4	5,4	7,1	10,5		
Concrete cone failure (version type	S, type ST	, type P)						
Effective embedment depth	h _{ef}	[mm]	52	68	80	92		
Edge distance	C _{cr,N}	[mm]		1,5	κ h _{ef}			
Spacing	S _{cr,N}	[mm]		3 x	h_{ef}			
Installation safety factor	γinst	[-]		1,	0			
Concrete pry-out failure (version ty	pe S, type	ST, type	P)					
Factor for pry-out failure	k ₈	[-]	1,0		2,0			
Concrete edge failure (version type	S, type ST	, type P)						
Effective length in concrete	$I_f = h_{ef}$	[mm]	52	68	80	92		
Nominal outer diameter of screw	d _{nom}	[mm]	8	10	12	14		

¹⁾ A4 and HCR not suitable

TOX screw anchor Sumo Max 1

Performances

Seismic category C2 - Characteristic load values with filled annular gap

Annex C4

TSM screw anchor size			8	10	12	14
		h _{nom}			om3	
Nominal embedment depth		[mm]	65	85	100	115
Steel failure for tension and shea	ar load (v	ersion t	ype S, type S1	「, type P)		
Characteristic load	N _{Rk,s,C2}	[kN]	27,0	45,0	67,0	94,0
Partial factor	γ _{Ms,N}	[-]		1	,5	
Characteristic load	$V_{Rk,s,C2}$	[kN]	10,3	21,9	24,4	23,3
Partial factor	γ _{Ms,V}	[-]		1,	25	
Without filling of the annular gap	$lpha_{\sf gap}$	[-]		0	,5	
Pull-out failure (version type S, type	ST, type	P)				
Characteristic load in cracked concrete	N _{Rk,p,C2}	[kN]	2,4	5,4	7,1	10,5
Steel failure for tension and shea	ar load (v	ersion t	ype SK)			
Characteristic load	N _{Rk,s,C2}	[kN]	27,0	45,0		
Partial factor	γ _{Ms,N}	[-]	1,	,5		
Characteristic load	$V_{Rk,s,C2}$	[kN]	3,6	13,7	no performa	nce assesse
Partial factor	γMs,V	[-]	1,	25		
Without filling of the annular gap	$lpha_{\sf gap}$	[-]	0	5		

Concrete cone failure (version type S, type SK, type ST, type P)								
Effective embedment depth	h _{ef}	[mm]	52	68	80	92		
Edge distance	C _{cr,N}	[mm]		1,5 x h _{ef}				
Spacing	S _{cr,N}	[mm]	3 x h _{ef}					
Installation safety factor	γ_{inst}	[-]	1,0					

[kN]

2,4

5,4

 $N_{\text{Rk},p,C2}$

Concrete pry-out failure (version	type S,	type S	K, type ST, t	ype P)
Factor for pry-out failure	k ₈	[-]	1,0	2,0

Concrete edge failure (version type S, type SK, type ST, type P)							
Effective length in concrete	$I_f = h_{ef}$	[mm]	52	68	80	92	
Nominal outer diameter of screw	d_{nom}	[mm]	8	10	12	14	

¹⁾ A4 and HCR not suitable

Characteristic load in

cracked concrete

TOX sc	rew anc	hor Su	mo Max 1
--------	---------	--------	----------

Performances

Seismic category C2 - Characteristic load values without filled annular gap

Annex C5

no performance assessed

Performances

Nominal embedment depth	TSM screw anchor size			6		8		10		12		14						
Steel failure for tension and shear load	Nominal emb	edmen	it depth										 					3
R30	- 164					55	45	55	65	55	75	85	65	85	100	75	100	11.
R60	Steel failure		1			_	Ι											
R90		—														 		•
R120																		
R30																		
R60 VRk,5,f60 [kN] 0,8 1,7 3,3 5,8 8,2 Resistance Resistance R90 VRk,5,f120 [kN] 0,6 1,1 2,3 4,2 5,9 R120 VRk,5,f120 [kN] 0,4 0,7 1,7 3,4 4,8 R30 M°Rk,5,f120 [kN] 0,4 0,7 1,7 3,4 4,8 R60 M°Rk,5,f120 [kN] 0,6 1,8 4,5 9,7 15,9 R90 M°Rk,5,f120 [km] 0,5 1,2 3,0 7,0 11,6 R120 M°Rk,5,f120 [km] 0,5 1,2 3,0 7,0 11,6 Resistance R90 NRk,p,fi [kN] 0,5 1,0 1,3 2,3 3,0 4,7 6,2 3,8 6,0 7 Characteristic Resistance R90 NRk,p,fi [kN] 0,5 1,0 1,3 2,1 3,8 3,2 3,9 2,																		!
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	characteristic																	,
R120																		
R30																		
R60							· ·		-									
R90		R60			0,	,6		1,8			4,5			9,7				
Pull-out failure Characteristic Resistance Ray NRk,p,fi [kN] 0,5 1,0 1,3 2,3 3,0 2,3 4,0 4,8 3,0 4,7 6,2 3,8 6,0 7, Resistance Characteristic Resistance Ray N°Rk,c,fi [kN] 0,9 2,2 1,2 2,1 3,4 2,1 4,8 6,6 3,0 6,3 9,9 4,4 9,6 14 Edge distance Ray N°Rk,c,fi [kN] 0,7 1,8 1,0 1,7 2,7 1,7 3,8 5,3 2,4 5,1 7,9 3,5 7,6 11 Edge distance Ray Dis R120 Ccr,fi [mm] Ccr,fi [mm] Cr,fi [mm] A x hef Pry-out failure Ray Dis R120 Ray Scr,fi [mm] Ray Dis R120 Ray Scr,fi [mm] A x hef The anchorage depth has to be increased for wet concrete by at least 30 mm compared to the given		R90			0,5							7,0				i		
Characteristic Resistance $(A \cap B) \cap B \cap B) \cap B \cap B \cap B \cap B \cap B)$ $(A \cap B) \cap B \cap B \cap B)$ $(A \cap B) \cap B \cap B \cap B \cap B)$ $(A \cap B) \cap B \cap B \cap B)$ $(A \cap B) \cap B \cap B \cap B)$ $(A \cap B) \cap B \cap B \cap B)$ $(A \cap B) \cap B \cap B \cap B)$ $(A \cap B) \cap B \cap B \cap B)$ $(A \cap B) \cap B \cap B \cap B \cap B)$ $(A \cap B) \cap B \cap B \cap B)$ $(A \cap B) \cap B \cap B \cap B)$ $(A \cap B) \cap B \cap B \cap B)$ $(A \cap B) \cap B \cap B \cap B)$ $(A \cap B) \cap B \cap B \cap B \cap B)$ $(A \cap B) \cap B \cap B \cap B \cap B)$ $(A \cap B) \cap B \cap B$ $(A \cap B) \cap B \cap B$ $(A \cap B) \cap B$ $(A \cap B) \cap B$ $(A \cap B)$ $(A \cap $		R120	M ⁰ Rk,s,fi120	[Nm]	0,	,3		0,9			2,3					9,4		
Characteristic Resistance $(R30-R90) = (R120 - R120) = (R120$	Pull-out failu	ıre																
Resistance R120 $N_{Rk,p,fi}$ $[kN]$ $0,4$ $0,8$ $1,0$ $1,8$ $2,4$ $1,8$ $3,2$ $3,9$ $2,4$ $3,8$ $4,9$ $3,0$ $4,8$ $6,6$ Concrete cone failure Characteristic R90 $N^0_{Rk,c,fi}$ $[kN]$ $0,9$ $2,2$ $1,2$ $2,1$ $3,4$ $2,1$ $4,8$ $6,6$ $3,0$ $6,3$ $9,9$ $4,4$ $9,6$ 14 14 15 15 15 15 15 15 15 15		R30-		FL.N.13	٥.	1.0	1 2	2.2	2.0	2.2	4.0	4.0		4 7	C 2		C 0	_
Concrete cone failure Characteristic Resistance R30-R90 N0-Rk,c,fi [kN] 0,9 2,2 1,2 2,1 3,4 2,1 4,8 6,6 3,0 6,3 9,9 4,4 9,6 14 14 14 15 15 15 15 15	Characteristic Resistance		.,,								·		<u> </u>			<u> </u>	·	Ļ
Characteristic R90 N0 _{Rk,c,fi} [kN] 0,9 2,2 1,2 2,1 3,4 2,1 4,8 6,6 3,0 6,3 9,9 4,4 9,6 14 Resistance R120 N0 _{Rk,c,fi} [kN] 0,7 1,8 1,0 1,7 2,7 1,7 3,8 5,3 2,4 5,1 7,9 3,5 7,6 11 Edge distance R30 bis R120 $c_{cr,fi}$ [mm] c		R120	N _{Rk,p,fi}	[kN]	0,4	0,8	1,0	1,8	2,4	1,8	3,2	3,9	2,4	3,8	4,9	3,0	4,8	6,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Concrete co	ne failu	ıre															
Resistance R120 N° Rk,c,fi [kN] 0,7 1,8 1,0 1,7 2,7 1,7 3,8 5,3 2,4 5,1 7,9 3,5 7,6 11 Edge distance R30 bis R120 $c_{cr,fi}$ [mm] $c_{cr,fi}$ $c_{cr,$	Characteristic	R30- R90	N ⁰ Rk,c,fi	[kN]	0,9	2,2	1,2	2,1	3,4	2,1	4,8	6,6	3,0	6,3	9,9	4,4	9,6	14
R30 bis R120 $c_{cr,fi}$ [mm] $2 \times h_{ef}$ In case of fire attack from more than one side, the minimum edge distance shall be ≥ 300 mm. Spacing R30 bis R120 $s_{cr,fi}$ [mm] $4 \times h_{ef}$ Pry-out failure R30 bis R120 k_8 [-] $1,0$ $2,0$ $1,0$ $2,0$ $1,0$ $2,0$ The anchorage depth has to be increased for wet concrete by at least 30 mm compared to the given	Resistance	R120	N ⁰ Rk,c,fi	[kN]	0,7	1,8	1,0	1,7	2,7	1,7	3,8	5,3	2,4	5,1	7,9	3,5	7,6	11
R30 bis R120 $c_{cr,fi}$ [mm] $2 \times h_{ef}$ In case of fire attack from more than one side, the minimum edge distance shall be ≥ 300 mm. Spacing R30 bis R120 $s_{cr,fi}$ [mm] $4 \times h_{ef}$ Pry-out failure R30 bis R120 k_8 [-] 1,0 2,0 1,0 2,0 1,0 2,0 The anchorage depth has to be increased for wet concrete by at least 30 mm compared to the given	Edge distance	:e																
In case of fire attack from more than one side, the minimum edge distance shall be ≥ 300 mm. Spacing R30 bis R120 $s_{cr,fi}$ [mm] $4 \times h_{ef}$ Pry-out failure R30 bis R120 k_8 [-] 1,0 2,0 1,0 2,0 1,0 2,0 The anchorage depth has to be increased for wet concrete by at least 30 mm compared to the given			C _{cr,fi}	[mm]	2 x h _{ef}													
Spacing R30 bis R120 $s_{cr,fi}$ [mm] $4 \times h_{ef}$ Pry-out failure R30 bis R120 k_8 [-] 1,0 2,0 1,0 2,0 1,0 2,0 The anchorage depth has to be increased for wet concrete by at least 30 mm compared to the given	In case of fire	attack	from more	than	one s	side,	the i	minir	num	edg	e dis	tanc	e sha	all be	≥300)mm		
Pry-out failure R30 bis R120 k_8 [-] 1,0 2,0 1,0 2,0 1,0 2,0 The anchorage depth has to be increased for wet concrete by at least 30 mm compared to the given																		
R30 bis R120 k_8 [-] 1,0 2,0 1,0 2,0 1,0 2,0 The anchorage depth has to be increased for wet concrete by at least 30 mm compared to the given	R30 bis R120		S _{cr,fi}	[mm]							4	x he	f					
The anchorage depth has to be increased for wet concrete by at least 30 mm compared to the given	Pry-out failur	e																
	R30 bis R120		k ₈	[-]			1,0				2,	,0	1,0	2	2,0	1,0	2	,0
	The anchorag	ge dept	h has to be	increa	sed 1	for w	et co	oncre	ete b	y at	least	30 r	nm d	comp	ared	to th	e give	en

Z56974.22 8.06.01-103/22

Fire exposure – characteristic values of resistance

Annex C6

TSM screw	anchor size			(5	8				10				
Naminal or	shadmant danth		h _{nom}	h _{nom1}	h _{nom2}	hno	h _{nom1} h _{no}		h _{nom3}	h _{nom1}	h _{nom2}	h _{nom}		
Nominal embedment depth		[mm]	40	55	45 55		55	65	55	75	85			
Considerati	tension load	N	[kN]	0,95	1,9	2,	,4	4,3	5,7	4,3	7,9	9,6		
Cracked concrete	displacement	δ_{NO}	[mm]	0,3	0,6	0,6		0,7	0,8	0,6	0,5	0,9		
	displacement	$\delta_{N^{\infty}}$	[mm]	0,4	0,4	0,	,6	1,0	0,9	0,4	1,2	1,2		
Unaradiod	tension load	N	[kN]	1,9	4,3	3,	,6	5,7	7,6	5,7	9,5	11,		
Uncracked concrete	displacement	$\delta_{ extsf{N0}}$	[mm]	0,4	4 0,6		,7	0,9	0,5	0,7	1,1	1,0		
	aispiacement	$\delta_{N^{\infty}}$	[mm]	0,4	0,4	0,	,6	1,0	0,9	0,4	1,2	1,2		
TSM screw	anchor size				12					14				
Nominal embedment depth			h _{nom}	h _{nom1}	h _{nom2}		h _{nor}	m3	h_{nom1}	h _{nom} ;	<u>2</u>	1 _{nom3}		
rioniniai en			[mm]	65	85	\perp	100	-	75	100	_	115		
Cracked	tension load	N	[kN]	5,7	9,4	\perp	12,		7,6	12,0		15,1		
concrete	displacement	$\delta_{ m N0}$	[mm]	0,9	0,5	1,0			0,5	0,8		0,7		
	<u> </u>	$\delta_{N^{\infty}}$	[mm]	1,0	1,2		1,2	2	0,9	1,2		1,0		
Uncracked	tension load	N	[kN]	7,6	13,2	\perp	17,	,2	10,6	16,9		21,2		
concrete	displacement	$\delta_{ ext{N0}}$	[mm]	1,0	1,1			-	0,9			0,8		
		δ_{N^∞}	[mm]	1,0	1,0 1,2 1,2 0			0,9	1,2 1,0					
able 13: Dis	splacements ur	ider sta	atic and	d quasi-	static s	hea	r loa	ad						
TSM screw	anchor size			(5			8			10			
Nominal em	nbedment depth		h _{nom}	h _{nom1}	h _{nom2}	h _{no}		h _{nom}		h _{nom1}	h _{nom2}	h _{nor}		
			[mm]	40	55	 		55 65		55 75		85		
Cracked and	shear load	$\delta_{ m V0}$	[kN] [mm]	 	,3 55			8,6			16,2			
uncracked	displacement					2,7				2,7				
concrete		$\delta_{V^{\infty}}$	[mm]	3	3,1			4,1		4,3				
TSM screw	anchor size				12					14				
Naminal am	shadmant danth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom}		m3	h _{nom1} h _{nom}		<u>2</u> }	1 _{nom3}		
Nominal embedment depth			[mm]	65 85		100		0	75	100 11		115		
Cracked	shear load	V	[kN]		20,0				30,5					
and		$\delta_{ m V0}$	[mm]		4,0						3,1			
uncracked concrete	displacement	$\delta_{V^{\infty}}$	[mm]		6,0					4,7				
								·						

according to annex B7, figure	-			ed annular	gap		
TSM screw anchor size			8	10	12	14	
Nominal embedment depth				h _n	om3		
			65	85	100	115	
Displacements under tension I	oads (versio	n type S, t	type ST, type	P)			
Displacement DLS	$\delta_{\text{N,eq(DLS)}}$	[mm]	0,66	0,32	0,57	1,16	
Displacement ULS	$\delta_{\text{N,eq(ULS)}}$	[mm]	1,74	1,36	2,36	4,39	
Displacements under shear loa	ads (version t	type S, typ	pe ST, type P	with hole cle	arance)		
Displacement DLS	$\delta_{\text{V,eq(DLS)}}$	[mm]	1,68	2,91	1,88	2,42	
Displacement ULS	$\delta_{\text{V,eq(ULS)}}$	[mm]	5,19	6,72	5,37	9,27	
TSM screw anchor size Nominal embedment depth		h _{nom}	8		12 14		
Nominal embedment depth		[mm]	65	85	100	115	
Displacements under tension I	oads (versio	n type S, t	type ST, type	e P)			
Disales and DLC	$\delta_{N,eq(DLS)}$	[mm]	0.66	0,32	0.57		
Displacement DLS	ON,eq(DLS)	[]	0,66	0,52	0,57	1,16	
Displacement ULS	$\delta_{N,eq(ULS)}$	[mm]	1,74	1,36	2,36	1,16 4,39	
·	$\delta_{N,eq(ULS)}$	[mm]	1,74				
Displacement ULS	$\delta_{N,eq(ULS)}$	[mm]	1,74		2,36	4,39	
Displacement ULS Displacements under tension I	δ _{N,eq(ULS)}	[mm] n type SK	1,74)	1,36	2,36		
Displacement ULS Displacements under tension I Displacement DLS	$\begin{array}{c} \delta_{\text{N,eq(ULS)}} \\ \text{oads (versio} \\ \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \end{array}$	[mm] n type SK [mm] [mm]	1,74) 0,66 1,74	1,36 0,32 1,36	2,36 no performa	4,39	
Displacement ULS Displacements under tension I Displacement DLS Displacement ULS	$\begin{array}{c} \delta_{\text{N,eq(ULS)}} \\ \text{oads (versio} \\ \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \end{array}$	[mm] n type SK [mm] [mm]	1,74) 0,66 1,74	1,36 0,32 1,36	2,36 no performa	4,39	
Displacement ULS Displacements under tension I Displacement DLS Displacement ULS Displacements under shear loa	$\begin{array}{c} \delta_{N,eq(ULS)} \\ \text{oads (versio} \\ \delta_{N,eq(DLS)} \\ \delta_{N,eq(ULS)} \\ \end{array}$	[mm] n type SK [mm] [mm]	1,74) 0,66 1,74 pe ST, type P	1,36 0,32 1,36 with hole cle	2,36 no performa	4,39	
Displacement ULS Displacements under tension I Displacement DLS Displacement ULS Displacements under shear load Displacement DLS	$\begin{array}{c} \delta_{\text{N,eq(ULS)}} \\ \text{oads (version } \\ \delta_{\text{N,eq(ULS)}} \\ \delta_{\text{N,eq(ULS)}} \\ \text{ads (version } \\ \delta_{\text{V,eq(DLS)}} \\ \delta_{\text{V,eq(ULS)}} \end{array}$	[mm] [mm] [mm] type S, type [mm] [mm]	1,74) 0,66 1,74 pe ST, type P 4,21 7,13	1,36 0,32 1,36 with hole cle 4,71 8,83	2,36 no performa arance) 4,42	4,39 nce assessed 5,60	
Displacement ULS Displacements under tension I Displacement DLS Displacement ULS Displacements under shear load Displacement DLS Displacement ULS	$\begin{array}{c} \delta_{\text{N,eq(ULS)}} \\ \text{oads (version } \\ \delta_{\text{N,eq(ULS)}} \\ \delta_{\text{N,eq(ULS)}} \\ \text{ads (version } \\ \delta_{\text{V,eq(DLS)}} \\ \delta_{\text{V,eq(ULS)}} \end{array}$	[mm] [mm] [mm] type S, type [mm] [mm]	1,74) 0,66 1,74 pe ST, type P 4,21 7,13	1,36 0,32 1,36 with hole cle 4,71 8,83	2,36 no performa arance) 4,42 6,95	4,39 nce assessed 5,60	

¹⁾ A4 and HCR not suitable

TOX screw anchor Sumo Max 1	
Performances	Annex C8
Displacements under seismic loads	